亚洲精品在线视频观看_亚洲第一区视频在线观看_国产精品日韩精品_91精品在线免费_91成人破解版_国产成人免费播放

Your Position: Home > News > Industry News

Single Transformer Proteins May Play a Role in Cancer

2012/8/1??????view:

  A new study led by scientists at The Scripps Research Institute (TSRI) and St. Jude Children's Research Hospital shows how a protein involved in cancer twists and morphs into different structures. The research focuses on a protein named nucleophosmin (NPM1). The protein has many functions and may interfere with cells' normal tumor suppressing ability when mutated. NPM1 has been implicated in cancers such as non-Hodgkin lymphoma and acute myelogenous leukemia.


    "We're studying basic biophysics, but we believe the complexity and rules we uncover for the physics of protein disorder and folding could one day also be used for better designs of therapeutics," said Ashok Deniz, Ph.D., associate professor at TSRI.


    The study (“Asymmetric Modulation of Protein Order-Disorder Transitions by Phosphorylation and Partner Binding”), published in Angewandte Chemie, focuses  on the nucleophosmin (NPM1) protein, which has many functions and, when mutated, has been shown to interfere with cells' normal tumor suppressing ability. NPM1 has been implicated in cancers such as non-Hodgkin lymphoma and acute myelogenous leukemia.


    Previous research led by study collaborators Richard Kriwacki, Ph.D., and Diana Mitrea, Ph.D., at St. Jude had demonstrated that a section of NPM1, called the N-terminal domain (Npm-N), doesn't have a defined, folded structure. Instead, the protein morphs between two forms: a one-subunit disordered monomer and a five-subunit folded pentamer.


    Until now, the mechanism behind this transformation was unknown, but scientists believed this monomer-pentamer equilibrium could be important for the protein's location and functioning in the cell. To shed light on how this transformation occurred, Dr. Deniz and his colleagues used a combination of three techniques—single-molecule biophysics, fluorescence resonance energy transfer (FRET), and circular dichroism, which enabled them to study individual molecules and collections of molecules. Single-molecule methods are especially useful for such studies because they can uncover important information that remains hidden in conventional studies.


    The researchers found that the transformation can proceed through more than one pathway. In one pathway, the transformation begins when the cell sends signals to attach phosphoryl groups to NPM1. Such phosphorylation prompts the ordered pentamer to become disordered and likely causes NPM1 to shuttle outside the cell's nucleus. A meeting with a binding partner can mediate the reverse transformation to a pentamer.


    When NPM1 does become a pentamer again under these conditions, which likely causes it to move back to the nucleolus, it takes a different path instead of just retracing its earlier steps.


    Priya Banerjee, Ph.D., an American Heart Association-supported postdoctoral research associate at TSRI and the first author of the study, compared these complicated transitions to the morphing of a "Transformers" toy, where a robot can become a car and then a jet. "Phosphorylation and partner-binding are like different cellular switches driving these changes," said Dr. Banerjee.


    According to Dr. Banerjee, the new study also reveals many intermediate states between monomer and pentamer structures and that these states can be manipulated or "tuned" by changing conditions such as salt levels, phosphorylation, and partner binding, which may explain how cells regulate the protein's multiple functions. The researchers said future studies could shed more light on the biological functions of these different structures and how they might be used in future cancer therapies.


    The team added that combining the three techniques used in this study, plus a novel protein-labeling technique for single-molecule fluorescence, could be a useful strategy for studying other unstructured, "intrinsically disordered proteins" (IDPs), which are involved in a host of cellular functions, as well as neurodegenerative disease, heart disease, infectious disease, type 2 diabetes and other conditions.  

主站蜘蛛池模板: 又大又粗又爽的少妇免费视频 | 亚洲国产综合精品 在线 一区 | 一 级 黄 色 大片 | 中国农村妇女hdxxxx | 偷拍在线观看视频在线观看地址 | 精品一区二区三区视频 | 日韩精品无码专区免费播放 | 91国内揄拍国内精品对白不卡 | 免费国内精品久久久久影院 | 久久精品私人影院免费看 | 欧美视频在线观看爱爱 | 色婷婷精品大在线视频 | 中文视频在线 | 日本高清va不卡视频在线观看 | 亚洲精品午夜在线观看 | 亚洲av无码成人专区片在线观看 | 欧美成人高清手机在线视频 | 澳门永久av免费网站 | 国产熟妇按摩3p高潮大叫 | 国产日产亚洲精品 | 欧美激情a∨在线视频播放 欧美激情第二页 | 热re99久久精品国产99热 | 社区天堂 | 97人妻熟女成人免费视频 | 另类图片亚洲色图 | 亚洲国产精品成人精品小说 | 亚洲国产精品高清在线一区 | 激情视频免费网站 | 伊人久久大香线蕉av成人 | 日韩不卡中文字幕 | 手机看片亚洲 | 国产精品1区 | 毛片网战| 99热在线观看精品 | 丰满少妇人妻无码专区 | 深夜a级毛片视频免费 | 精品少妇人妻av一区二区三区 | 777奇米四色成人影视色区 | 亚洲精品一区二区三区第四页 | 日韩欧美在线视频观看 | 亚洲av综合色区在线观看 |